

Senior Design Team 302:

Design/Prototype a Multi-Platform Broadband Communication Payload for a Search and Rescue Operation

Sponsor – Northrop Grumman

Introductions

Theodore Houck ~ Financial Advisor

Nicholas Crenshaw ~ Lead CPE

Jarrod Love ~ Lead EE

Matthew Brown ~ Team Leader

Sponsor Contact – Lin, Anny Advisor – Dr. Arora

Outline

- Project Recap
- Preliminary Design
- Preliminary Results
- Where we are now

Background of Project

- A natural disaster has occurred off the coast. Several ships have been severely damaged in such a way that they are unable to return to shore.
- These ships and yachts must be located so that search and rescue (SAR) operations such as emergency helicopters and lifeboats can be deployed to support stranded people and vessels.

Presenter: Jarrod Love

Scope of Project

Key Goals

- Payload can detect emergency signals found in typical emergency radar beacon signal
- Once detected a timestamp of the detection and current GPS location will be stored
- 3. The payload should be able to attach to a drone without majorly hindering the function of the drone

<u>Assumptions</u>

- Team will be given a data sheet/information about the drone
- Detection algorithm needed for payload is provided by sponsor and is feasible

Markets

- Primary Market U.S. Coast Guard
- Secondary Market Various emergency responders or U.S. Military

<u>Stakeholders</u>

- Northrop Grumman
- United States Coast Guard
- United States Military

Presenter: Jarrod Love

Parts

FPGA
Xilinx Zynq UltraScale+
MPSoC ZCU102

SD CARD
SanDisk 32GB Ultra SDHC UHS-I
Memory Card - 120MB/s

Power SourceBatteryGuy 12V 220 mAh
Alkaline Door Lock Battery

Antenna
VHF stout and long antenna
SMA connector 147-160MHz

Components

Transceiver
AD-FMCOMMS4-EBZ
Wideband Software Defined
Radio Board

Battery Connectors
Cable Matters 2-Pack 6 Pin
PCle Extension Cable 10
Inches

PMOD GPSDigilent GPS Receiver

Preliminary Design Block Diagram

Planned Solution

- This diagram follows the path of the signal
- Additional parts of the planned design solution are the following
 - Independent battery source
 - > Payload container shall be water resistant

Transceiver Module Progress

- Original idea was to plug into FPGA and code to it
- Documentation for the receiver do not say what pins are needed to program/read data to/from transceiver
 - FMC Connection (68 single-ended, 34 differential user-defined pair pins)
- The suggested method from the dealer is to setup up their local Linux environment on the FPGA

Transceiver Module Progress

- Took approximately 1 month to setup the transceiver and this Linux environment
- Main issues:
 - Did not know how to connect to console UART on FPGA
 - Had no experience with setting up a Linux environment/image
 - Display was not working
 - Peripherals in device tree were setup incorrectly
 - Once environment was setup it was not detecting the transceiver

Transceiver Module Progress

- Total implementation of transceiver ~90%
- Currently able to detect signals coming from the signal generator via a direct SMA cable
- Need to test antennas
- The current FPGA local Linux environment/program setup allows to change numerous settings on FPGA

Presenter: Matthew Brown

PMOD GPS Module Progress

- GPS Module was a recent addition
- Have not started implementing the PMOD GPS
- Focus was getting the transceiver to work the past couple of weeks

Housing Progress

- The 3-D printed housing for the design is currently in production
- The design for said housing is completed
- Will be printed using FSU's provided 3D printers

Presenter: Theodore Houck

What's Next

Transceiver

- Setup grab data from DDR4 memory on FPGA using VHDL
- Combine this with PMOD GPS time data for timestamping
- Test antennas attached to transceiver and a signal generator
- Test remote power source for FPGA
- Test housing design
- Calculate and test limits of design

Summary

- The FPGA has been configured for operation with a working GUI interface.
- The transceiver has been configured to operate with the FPGA.
- Signals received by the payload can now be displayed and Viewed. *However, this has only been achieved by direct connection, and signal detection from the antenna has yet to be established.
- The payload's housing is awaiting 3-D printing.

Presenter: Theodore Houck

Thanks for Listening! Questions?

